On-line Language Model Biasing for Statistical Machine Translation

نویسندگان

  • Sankaranarayanan Ananthakrishnan
  • Rohit Prasad
  • Premkumar Natarajan
چکیده

The language model (LM) is a critical component in most statistical machine translation (SMT) systems, serving to establish a probability distribution over the hypothesis space. Most SMT systems use a static LM, independent of the source language input. While previous work has shown that adapting LMs based on the input improves SMT performance, none of the techniques has thus far been shown to be feasible for on-line systems. In this paper, we develop a novel measure of cross-lingual similarity for biasing the LM based on the test input. We also illustrate an efficient on-line implementation that supports integration with on-line SMT systems by transferring much of the computational load off-line. Our approach yields significant reductions in target perplexity compared to the static LM, as well as consistent improvements in SMT performance across language pairs (English-Dari and English-Pashto).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new model for persian multi-part words edition based on statistical machine translation

Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...

متن کامل

The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language

Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...

متن کامل

A Hybrid Machine Translation System Based on a Monotone Decoder

In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...

متن کامل

Word-to-Word Models of Translational Equivalence

Parallel texts (bitexts) have properties that distinguish them from other kinds of parallel data. First, most words translate to only one other word. Second, bitext correspondence is noisy. This article presents methods for biasing statistical translation models to reflect these properties. Analysis of the expected behavior of these biases in the presence of sparse data predicts that they will ...

متن کامل

Word - to - Word Models ofTranslational

Parallel texts (bitexts) have properties that distinguish them from other kinds of parallel data. First, most words translate to only one other word. Second, bitext correspondence is noisy. This article presents methods for biasing statistical translation models to reeect these properties. Analysis of the expected behavior of these biases in the presence of sparse data predicts that they will r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011